login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*2^n + 3.
3

%I #24 Sep 08 2022 08:45:47

%S 10,17,31,59,115,227,451,899,1795,3587,7171,14339,28675,57347,114691,

%T 229379,458755,917507,1835011,3670019,7340035,14680067,29360131,

%U 58720259,117440515,234881027,469762051,939524099,1879048195,3758096387

%N a(n) = 7*2^n + 3.

%C Contains the primes 17, 31, 59, 227, 57347, 114691, 14680067, 7516192771,..

%H Vincenzo Librandi, <a href="/A164285/b164285.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F a(n) = 2*a(n-1) - 3.

%F a(n) = 3*a(n-1) - 2*a(n-2).

%F a(n) = A005009(n) + 3, a(0)=10.

%F G.f.: (10-13*x)/((2*x-1)*(x-1)).

%F E.g.f.: 7*exp(2*x) + 3*exp(x). - _G. C. Greubel_, Sep 12 2017

%e At n=0, a(0)=7*2^0+3=10. At n=1, a(1)=7*2^1+3=17.

%t CoefficientList[Series[(10 - 13 x) / ((2 x - 1) (x - 1)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 12 2013 *)

%t LinearRecurrence[{3,-2},{10,17},40] (* _Harvey P. Dale_, Aug 29 2017 *)

%o (Magma) [7*2^n+3: n in [0..40]]; // _Vincenzo Librandi_, Sep 12 2013

%o (PARI) x='x+O('x^50); Vec((10-13*x)/((2*x-1)*(x-1))) \\ _G. C. Greubel_, Sep 12 2017

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Aug 12 2009

%E Offset corrected by _R. J. Mathar_, Aug 19 2009