Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 08 2022 08:45:47
%S 5,36,262,1920,14132,104304,771160,5707584,42271568,313200960,
%T 2321178208,17205305856,127543611200,945542935296,7010032442752,
%U 51971929512960,385322051101952,2856819009782784,21180878379927040
%N a(n) = 12*a(n-1) - 34*a(n-2) for n > 1; a(0) = 5, a(1) = 36.
%C Binomial transform of A164038. Sixth binomial transform of A164095.
%H Vincenzo Librandi, <a href="/A164110/b164110.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-34).
%F a(n) = ((5+3*sqrt(2))*(6+sqrt(2))^n+(5-3*sqrt(2))*(6-sqrt(2))^n)/2.
%F G.f.: (5-24*x)/(1-12*x+34*x^2).
%F E.g.f.: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(6*x). - _G. C. Greubel_, Sep 11 2017
%t LinearRecurrence[{12,-34}, {5,36}, 50] (* _G. C. Greubel_, Sep 11 2017 *)
%o (Magma) [ n le 2 select 31*n-26 else 12*Self(n-1)-34*Self(n-2): n in [1..19] ];
%o (PARI) x='x+O('x^50); Vec((5-24*x)/(1-12*x+34*x^2)) \\ _G. C. Greubel_, Sep 11 2017
%Y Cf. A164038, A164095.
%K nonn
%O 0,1
%A _Klaus Brockhaus_, Aug 10 2009