login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164097
Numbers k such that 6*k + 7 is a perfect square.
3
3, 7, 19, 27, 47, 59, 87, 103, 139, 159, 203, 227, 279, 307, 367, 399, 467, 503, 579, 619, 703, 747, 839, 887, 987, 1039, 1147, 1203, 1319, 1379, 1503, 1567, 1699, 1767, 1907, 1979, 2127, 2203, 2359, 2439, 2603, 2687, 2859, 2947, 3127, 3219, 3407, 3503, 3699
OFFSET
1,1
COMMENTS
The entries are prime, or divisible by 3, or divisible by prime of the form 3*m+1.
FORMULA
From R. J. Mathar, Aug 26 2009: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-3-4*x-6*x^2+x^4)/((1+x)^2*(x-1)^3).
a(n) = 3*(2*n-1+2*n^2)/4 -(-1)^n*(1+2*n)/4 = A062717(n+1)-1. (End)
Sum_{n>=1} 1/a(n) = 1 + (tan((2+sqrt(7))*Pi/6) - cot((1+sqrt(7))*Pi/6))*Pi/(2*sqrt(7)). - Amiram Eldar, Feb 24 2023
MATHEMATICA
Select[Range[4000], IntegerQ[Sqrt[6 # + 7 ]] &] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {3, 7, 19, 27, 47}, 50] (* Harvey P. Dale, Apr 29 2011 *)
PROG
(Magma) [n: n in [1..4000] | IsSquare(6*n+7)]; // Vincenzo Librandi, Oct 12 2012
CROSSREFS
Cf. A062717, A104777 (the squares 6*k+7).
Sequence in context: A203321 A203319 A366171 * A171140 A186452 A016046
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 10 2009
EXTENSIONS
Edited by R. J. Mathar, Aug 26 2009
STATUS
approved