login
Zero together with row 8 of the array in A163280.
5

%I #14 Dec 25 2022 13:06:16

%S 0,17,34,39,68,65,102,98,128,153,170,198,228,260,294,330,368,408,450,

%T 494,540,588,638,690,744,800,858,918,980,1044,1110,1178,1248,1320,

%U 1394,1470,1548,1628,1710,1794,1880,1968,2058,2150,2244,2340,2438,2538,2640

%N Zero together with row 8 of the array in A163280.

%H Harvey P. Dale, <a href="/A164008/b164008.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1).

%F Conjecture: a(n) = A028563(n), n > 9. [_R. J. Mathar_, Jul 31 2010]

%p A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n), list)) ; op(floor((nops(dvs)+1)/2) , dvs) ; end: A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: printf("0,") ; for n from 1 to 70 do printf("%d,",A163280(8,n)) ; end do ; # _R. J. Mathar_, Feb 05 2010

%t LinearRecurrence[{3,-3,1},{0,17,34,39,68,65,102,98,128,153,170,198,228},50] (* _Harvey P. Dale_, Dec 25 2022 *)

%Y Cf. A008578, A161344, A161345, A163280, A164000, A164007, A164009.

%K nonn

%O 0,2

%A _Omar E. Pol_, Aug 08 2009

%E Terms beyond 228 from _R. J. Mathar_, Feb 05 2010