login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Zero together with row 5 of the array in A163280.
3

%I #16 Jan 25 2023 06:47:21

%S 0,7,14,21,32,45,60,77,96,117,140,165,192,221,252,285,320,357,396,437,

%T 480,525,572,621,672,725,780,837,896,957,1020,1085,1152,1221,1292,

%U 1365,1440,1517,1596,1677,1760,1845,1932,2021,2112,2205,2300,2397,2496,2597

%N Zero together with row 5 of the array in A163280.

%H G. C. Greubel, <a href="/A164005/b164005.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1).

%F Conjecture: a(n) = A100451(n+2). (See A163280.)

%F From _G. C. Greubel_, Aug 28 2017: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3.

%F a(n) = n*(n+4), n >= 3.

%F G.f.: x*(7 - 7*x + 4*x^3 - 2*x^4)/(1 - x)^3.

%F E.g.f.: x*(x+5)*exp(x) + 2*x + x^2. (End)

%p A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164005 := proc(n) if n = 0 then 0; else A163280(5,n) ; fi; end: seq(A164005(n),n=0..80) ; # _R. J. Mathar_, Aug 09 2009

%t Join[{0, 7, 14}, Table[n*(n + 4), {n, 3, 50}]] (* _G. C. Greubel_, Aug 28 2017 *)

%o (PARI) x='x+O('x^50); concat([0], Vec(x*(7 - 7*x + 4*x^3 - 2*x^4)/(1 - x)^3)) \\ _G. C. Greubel_, Aug 28 2017

%Y Cf. A008578, A161344, A161345, A163280, A164000, A164004, A164006.

%Y Cf. A028347.

%K nonn,easy

%O 0,2

%A _Omar E. Pol_, Aug 08 2009

%E Extended by _R. J. Mathar_, Aug 09 2009