login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all isolated parts of all partitions of n.
4

%I #17 Jan 25 2023 06:39:16

%S 0,1,2,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,

%T 49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,

%U 95,97,99,101,103,105,107,109,111,113

%N Sum of all isolated parts of all partitions of n.

%C Note that for n >= 3 the isolated parts of all partitions of n are n and n-1.

%H G. C. Greubel, <a href="/A163985/b163985.txt">Table of n, a(n) for n = 0..5000</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa2dt.jpg">Illustration of the shell model of partitions (2D view)</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa3dt.jpg">Illustration of the shell model of partitions (3D view)</a>

%F a(n) = n for n<3, a(n) = 2*n-1 for n>=3.

%F a(n) = A140139(n), n>=1.

%F a(n) = A130773(n-1), n >=2. - _R. J. Mathar_, Jan 25 2023

%e For n=4, the five partitions of 4 are {(4);(2,2);(3,1);(2,1,1);(1,1,1,1)}. Since 1 and 2 are repeated parts and 3 and 4 are not repeated parts (or isolated parts) then a(4) = 3 + 4 = 7.

%t Join[{0, 1, 2}, Table[2 n - 1, {n, 3, 60}]] (* _Vincenzo Librandi_, Dec 23 2015 *)

%o (Magma) [0,1,2] cat [2*n-1: n in [3..60]]; // _Vincenzo Librandi_, Dec 23 2015

%o (PARI) a(n) = if (n<3, n, 2*n-1); \\ _Michel Marcus_, Dec 23 2015

%Y Cf. A000041, A005408, A140139, A163986.

%K easy,nonn,less

%O 0,3

%A _Omar E. Pol_, Aug 14 2009