Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 06 2019 12:27:06
%S 1,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,-1,
%T -1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,
%U -1,-1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1,0,-1,-1,-1,-1,0,1,1,1,1
%N Expansion of (1 - x^5) * (1 - x^6) / ((1 - x) * (1 - x^10)) in powers of x.
%H G. C. Greubel, <a href="/A163812/b163812.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1).
%F Euler transform of length 10 sequence [ 1, 0, 0, 0, -1, -1, 0, 0, 0, 1].
%F a(5*n) = 0 unless n=0.
%F a(n) = -a(-n) unless n=0. a(n+5) = -a(n) unless n=0 or n=-5.
%F G.f.: (1 + x^2 + x^4) / (1 - x + x^2 - x^3 + x^4).
%F a(n) = (-1)^n * A163818(n). Convolution inverse of A163811.
%F G.f.: A(x) = 1 / (1 - x / ( 1 + x^4 / (1 + x^2))) = 1 + x / (1 - x / (1 + x^3 / (1 + x^2 / (1 + x / (1 - x))))). - _Michael Somos_, Jan 03 2013
%F a(n) = A099443(n-1), n>0. - _R. J. Mathar_, Aug 05 2009
%e G.f. = 1 + x + x^2 + x^3 + x^4 - x^6 - x^7 - x^8 - x^9 + x^11 + x^12 + x^13 + ...
%t a[ n_] := Boole[n == 0] + (-1)^Quotient[n, 5] Sign@Mod[n, 5]; (* _Michael Somos_, Jun 17 2015 *)
%o (PARI) {a(n) = (n==0) + [0, 1, 1, 1, 1, 0, -1, -1, -1, -1][n%10 + 1]};
%Y Cf. A099443, A163811, A163818.
%K sign,easy
%O 0,1
%A _Michael Somos_, Aug 04 2009