Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Jun 05 2021 01:55:11
%S 1,1,2,2,4,6,10,16,26,42,68,110,178,288,466,754,1220,1974,3194,5168,
%T 8362,13530,21892,35422,57314,92736,150050,242786,392836,635622,
%U 1028458,1664080,2692538,4356618,7049156,11405774,18454930,29860704,48315634,78176338
%N Number of n X 2 binary arrays with all 1's connected, all corners 1, and no 1 having more than two 1's adjacent.
%C Same recurrence for A163695.
%C Same recurrence for A163714.
%C Appears to coincide with diagonal sums of A072405. - _Paul Barry_, Aug 10 2009
%C From _Gary W. Adamson_, Sep 15 2016: (Start)
%C Let the sequence prefaced with a 1: (1, 1, 1, 2, 2, 4, 6, ...) equate to r(x). Then (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) = the Fibonacci sequence, (1, 1, 2, 3, 5, ...). Let M = the following production matrix:
%C 1, 0, 0, 0, 0, ...
%C 1, 0, 0, 0, 0, ...
%C 1, 1, 0, 0, 0, ...
%C 2, 1, 0, 0, 0, ...
%C 2, 1, 1, 0, 0, ...
%C 4, 2, 1, 0, 0, ...
%C 6, 2, 1, 1, 0, ...
%C ...
%C Limit of the matrix power M^k as k->infinity results in a single column vector equal to the Fibonacci sequence. (End)
%C Apparently a(n) = A128588(n-2) for n > 3. - _Georg Fischer_, Oct 14 2018
%H R. H. Hardin, <a href="/A163733/b163733.txt">Table of n, a(n) for n=1..100</a>
%F Empirical: a(n) = a(n-1) + a(n-2) for n >= 5.
%F G.f.: (1-x^3)/(1-x-x^2) (conjecture). - _Paul Barry_, Aug 10 2009
%F a(n) = round(phi^(k-1)) - round(phi^(k-1)/sqrt(5)), phi = (1 + sqrt(5))/2 (conjecture). - _Federico Provvedi_, Mar 26 2013
%F G.f.: 1 + 2*x - x*Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (conjecture), (continued fraction). - _Sergei N. Gladkovskii_, Oct 05 2013
%F G.f.: If prefaced with a 1, (1, 1, 1, 2, 2, 4, ...): (1 - x^2 - x^4)/(1 - x - x^2); where the modified sequence satisfies A(x)/A(x^2), A(x) is the Fibonacci sequence. - _Gary W. Adamson_, Sep 15 2016
%e All solutions for n=8:
%e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
%e 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
%e 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1
%e 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1
%e 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0
%e 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0
%e 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
%e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
%e ------
%e 1 1 1 1 1 1 1 1 1 1 1 1
%e 0 1 0 1 0 1 1 0 1 0 1 0
%e 1 1 1 1 0 1 1 0 1 1 1 1
%e 1 0 1 0 1 1 1 1 0 1 0 1
%e 1 1 1 0 1 0 0 1 0 1 1 1
%e 0 1 1 1 1 1 1 1 1 1 1 0
%e 0 1 0 1 0 1 1 0 1 0 1 0
%e 1 1 1 1 1 1 1 1 1 1 1 1
%t Join[{1, 1}, Table[2*Fibonacci[n], {n, 70}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 10 2012 *)
%t Table[Round[GoldenRatio^(k-1)] - Round[GoldenRatio^(k-1)/Sqrt[5]], {k, 1, 70}] (* _Federico Provvedi_, Mar 26 2013 *)
%Y Cf. A118658, A055389, A006355, A006355, A169985, A000045.
%Y Cf. A128588. - _Georg Fischer_, Oct 14 2018
%K nonn
%O 1,3
%A _R. H. Hardin_, Aug 03 2009