login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((5 + 2*sqrt(2))*(5 + sqrt(2))^n + (5 - 2*sqrt(2))*(5 - sqrt(2))^n)/2.
3

%I #11 Sep 08 2022 08:45:46

%S 5,29,175,1083,6805,43141,274895,1756707,11244485,72040589,461782735,

%T 2960893803,18987935125,121778793781,781065429935,5009742042387,

%U 32132915535365,206105088378749,1321993826474095,8479521232029723

%N a(n) = ((5 + 2*sqrt(2))*(5 + sqrt(2))^n + (5 - 2*sqrt(2))*(5 - sqrt(2))^n)/2.

%C Binomial transform of A163610. Fifth binomial transform of A163888.

%H G. C. Greubel, <a href="/A163611/b163611.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-23).

%F a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 5, a(1) = 29.

%F G.f.: (5-21*x)/(1-10*x+23*x^2).

%F E.g.f.: exp(5*x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Jul 29 2017

%t LinearRecurrence[{10, -23}, {5, 29}, 50] (* _G. C. Greubel_, Jul 29 2017 *)

%o (Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+2*r)*(5+r)^n+(5-2*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 06 2009

%o (PARI) x='x+O('x^50); Vec((5-21*x)/(1-10*x+23*x^2)) \\ _G. C. Greubel_, Jul 29 2017

%Y Cf. A163610, A163888.

%K nonn

%O 0,1

%A Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009

%E Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 06 2009