login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd part of the swinging factorial A056040.
7

%I #43 May 08 2020 17:33:00

%S 1,1,1,3,3,15,5,35,35,315,63,693,231,3003,429,6435,6435,109395,12155,

%T 230945,46189,969969,88179,2028117,676039,16900975,1300075,35102025,

%U 5014575,145422675,9694845,300540195,300540195,9917826435,583401555,20419054425,2268783825

%N Odd part of the swinging factorial A056040.

%C Let n$ denote the swinging factorial. a(n) = n$ / 2^sigma(n) where sigma(n) is the exponent of 2 in the prime-factorization of n$. sigma(n) can be computed as the number of '1's in the base 2 representation of floor(n/2).

%C If n is even then a(n) is the numerator of the reduced ratio (n-1)!!/n!! = A001147(n-1)/A000165(n), and if n is odd then a(n) is the numerator of the reduced ratio n!!/(n-1)!! = A001147(n)/A000165(n-1). The denominators for each ratio should be compared to A060818. Here all ratios are reduced. - _Anthony Hernandez_, Feb 05 2020 [See the Mathematica program for a more compact form of the formula. _Peter Luschny_, Mar 01 2020 ]

%H G. C. Greubel, <a href="/A163590/b163590.txt">Table of n, a(n) for n = 0..1000</a>

%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.

%H Peter Luschny, <a href="http://luschny.de/math/factorial/SwingIntro.pdf">Swinging Factorial.</a>

%F a(2*n) = A001790(n).

%F a(2*n+1) = A001803(n).

%F a(n) = a(n-1)*n^((-1)^(n+1))*2^valuation(n, 2) for n > 0. - _Peter Luschny_, Sep 29 2019

%e 11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 3^2*7*11 = 2772/4 = 693.

%e From _Anthony Hernandez_, Feb 04 2019: (Start)

%e a(7) = numerator((1*3*5*7)/(2*4*6)) = 35;

%e a(8) = numerator((1*3*5*7)/(2*4*6*8)) = 35;

%e a(9) = numerator((1*3*5*7*9)/(2*4*6*8)) = 315;

%e a(10) = numerator((1*3*5*7*9)/(2*4*6*8*10)) = 63. (End)

%p swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:

%p sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):

%p a := n -> swing(n)/sigma(n);

%t sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/ f!]; a[n_] := With[{s = sf[n]}, s/2^IntegerExponent[s, 2]]; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Jul 26 2013 *)

%t r[n_] := (n - Mod[n - 1, 2])!! /(n - 1 + Mod[n - 1, 2])!! ;

%t Table[r[n], {n, 0, 36}] // Numerator (* _Peter Luschny_, Mar 01 2020 *)

%o (Sage) # uses[A000120]

%o @CachedFunction

%o def swing(n):

%o if n == 0: return 1

%o return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n

%o A163590 = lambda n: swing(n)/2^A000120(n//2)

%o [A163590(n) for n in (0..31)] # _Peter Luschny_, Nov 19 2012

%o # Alternatively:

%o (Sage)

%o @cached_function

%o def A163590(n):

%o if n == 0: return 1

%o return A163590(n - 1) * n^((-1)^(n + 1)) * 2^valuation(n, 2)

%o print([A163590(n) for n in (0..31)]) # _Peter Luschny_, Sep 29 2019

%o (PARI)

%o A163590(n) = {

%o my(a = vector(n+1)); a[1] = 1;

%o for(n = 1, n,

%o a[n+1] = a[n]*n^((-1)^(n+1))*2^valuation(n, 2));

%o a } \\ _Peter Luschny_, Sep 29 2019

%Y Cf. A056040, A060632, A001790, A001803.

%K nonn

%O 0,4

%A _Peter Luschny_, Aug 01 2009