login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163571
Primes p such that p^8-8 is also prime.
1
3, 7, 19, 73, 101, 107, 263, 353, 359, 443, 521, 523, 557, 613, 733, 829, 1033, 1097, 1103, 1109, 1129, 1283, 1307, 1601, 1613, 1699, 1811, 1949, 2111, 2237, 2293, 2333, 2459, 2551, 2777, 2917, 3517, 3593, 3631, 3637, 4127, 4133, 4211, 4349, 4483, 4643
OFFSET
1,1
LINKS
EXAMPLE
For p=3, 3^8-8=6553 is prime, which adds 3 to the sequence.
For p=7, 7^8-8=5764793 is prime, which adds 7 to the sequence.
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[p^8-8], AppendTo[lst, p]], {n, 7!}]; lst
Select[Prime[Range[800]], PrimeQ[(#^8 - 8)]&] (* Vincenzo Librandi, Apr 15 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(5000) | IsPrime(p^8-8)]; // Vincenzo Librandi, Apr 15 2013
(PARI) for(n=1, 500, m=prime(n); if(isprime(m^8 -8), print1(m, ", "))) \\ G. C. Greubel, Jul 28 2017
CROSSREFS
Cf. A163570.
Sequence in context: A341323 A135741 A328159 * A217611 A322852 A243583
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Mathematica code corrected by R. J. Mathar, Aug 01 2009
STATUS
approved