login
A163566
Total number of grid diagrams of nontrivial knots on grid size n.
0
10, 972, 85022, 8077072
OFFSET
5,1
COMMENTS
From page 3 of Baldridge/McCarthy reference.
Note that creating grid diagrams with sizes above 8 is time intensive and the computation to rule out unknot grid diagrams grows quickly beyond the capabilities of most computers. Baldridge and McCarty highlight some of the differences between cube diagrams and grid diagrams, list examples of small cube diagrams for all knots up to 7 crossings, and give some examples of links.
LINKS
Scott Baldridge, Ben McCarty, Small examples of cube diagrams of knots, July 30, 2009.
EXAMPLE
The table on p.3 may be shown, where b(n) = Number that lift to cube diagrams:
==========================================
.n.|..a(n)...|...b(n)..|.b(n) as % of a(n)
...|.........|.........|.................
.5.|......10.|.......3.|.30%.............
.6.|.....972.|.....261.|.27%.............
.7.|...85022.|...19722.|.23%.............
.8.|.8077072.|.1589447.|.19.7%...........
==========================================
CROSSREFS
Sequence in context: A292669 A159869 A006242 * A168520 A200993 A365704
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Jul 30 2009
STATUS
approved