login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163556
Composite numbers such that exactly four distinct permutations of decimal digits are prime.
3
170, 194, 710, 790, 791, 793, 914, 917, 970, 973, 1003, 1012, 1015, 1016, 1024, 1028, 1030, 1042, 1082, 1090, 1102, 1105, 1106, 1120, 1126, 1135, 1138, 1150, 1157, 1159, 1160, 1162, 1175, 1178, 1183, 1195, 1204, 1208, 1210, 1216, 1234, 1240, 1243, 1258
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 170 because 170 is composite, the four permutations 17, 71, 107, and 701 are all prime, and no other permutation of 170 is prime.
MAPLE
filter:= proc(n) local d, Permutor, P, c, i;
if isprime(n) then return false fi;
d:= ilog10(n)+1;
Permutor:= Iterator:-Permute(convert(n, base, 10));
c:= 0;
for P in Permutor do
if isprime(add(P[i]*10^(i-1), i=1..d)) then
c:= c+1;
if c >= 5 then return false fi;
fi
od;
evalb(c=4)
end proc:
select(filter, [$10..2000]); # Robert Israel, Aug 10 2020
MATHEMATICA
Select[Range[1300], CompositeQ[#]&&Count[FromDigits/@Permutations[ IntegerDigits[ #]], _?PrimeQ]==4&] (* Harvey P. Dale, Oct 26 2015 *)
KEYWORD
easy,nonn,base
AUTHOR
Gil Broussard, Jul 30 2009
STATUS
approved