login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers such that exactly three distinct permutations of digits give primes.
3

%I #14 Aug 10 2020 13:18:08

%S 130,136,175,176,301,310,316,361,370,371,395,398,517,539,671,703,713,

%T 715,716,730,731,893,935,938,1004,1025,1027,1034,1040,1043,1052,1058,

%U 1072,1085,1118,1124,1142,1147,1169,1174,1189,1196,1198,1205,1207,1214

%N Composite numbers such that exactly three distinct permutations of digits give primes.

%H Robert Israel, <a href="/A163555/b163555.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 130 because 130 is composite and 13, 31, and 103 are prime permutations, and no other permutation of 130 is prime.

%p filter:= proc(n) local d, Permutor, P, c, i;

%p if isprime(n) then return false fi;

%p d:= ilog10(n)+1;

%p Permutor:= Iterator:-Permute(convert(n, base, 10));

%p c:= 0;

%p for P in Permutor do

%p if isprime(add(P[i]*10^(i-1), i=1..d)) then

%p c:= c+1;

%p if c >= 4 then return false fi;

%p fi

%p od;

%p evalb(c=3)

%p end proc:

%p select(filter, [$100..2000]); # _Robert Israel_, Aug 10 2020

%t With[{no=1400},Select[Complement[Range[no],Prime[Range[PrimePi[no]]]],Count[FromDigits/@Permutations[IntegerDigits[#]],_?PrimeQ]==3&]] (* _Harvey P. Dale_, Feb 25 2011 *)

%Y Cf. A163554, A163556, A163557, A163558, A163559, A163560, A163561, A163562.

%K easy,nonn,base

%O 1,1

%A _Gil Broussard_, Jul 30 2009