Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:45:46
%S 12,-20,76,876,3340,8812,19020,36076,62476,101100,155212,228460,
%T 324876,448876,605260,799212,1036300,1322476,1664076,2067820,2540812,
%U 3090540,3724876,4452076,5280780,6220012,7279180,8468076,9796876,11276140
%N The 4th Hermite Polynomial evaluated at n: H_4(n) = 16n^4 - 48n^2 + 12.
%H Vincenzo Librandi, <a href="/A163323/b163323.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>
%H <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 16*n^4 - 48*n^2 + 12.
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
%F G.f.: 4*(-3 +20*x -74*x^2 -44*x^3 +5*x^4)/(x-1)^5.
%F H_(m+1)(x) = 2*x*H_m(x) - 2*m*H_(m-1)(x), with H_0(x)=1, H_1(x)=2x.
%p A163323 := proc(n) orthopoly[H](4,n) ; end: seq(A163323(n),n=0..80) ; # _R. J. Mathar_, Jul 26 2009
%t Table[HermiteH[4,n],{n,0,50}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 03 2009 *)
%t Table[16 n^4 - 48 n^2 + 12, {n, 0, 30}] (* _Vincenzo Librandi_, Sep 25 2014 *)
%t LinearRecurrence[{5,-10,10,-5,1},{12,-20,76,876,3340},40] (* _Harvey P. Dale_, Jul 03 2019 *)
%o (Magma) [16*n^4-48*n^2+12: n in [0..40]]; // _Vincenzo Librandi_, Mar 05 2012
%o (PARI) a(n)=16*n^4-48*n^2+12 \\ _Charles R Greathouse IV_, Jan 29 2016
%o (Python)
%o from sympy import hermite
%o def A163323(n): return hermite(4,n) # _Chai Wah Wu_, Jan 06 2022
%Y Cf. A059343, A060821, A163322.
%K sign,easy
%O 0,1
%A _Vincenzo Librandi_, Jul 25 2009
%E Edited by _R. J. Mathar_, Jul 26 2009