login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.
2

%I #13 Nov 12 2020 06:35:44

%S 1,1,4,8,19,36,76,142,272,496,900,1592,2784,4792,8138,13688,22703,

%T 37380,60838,98310,157298,250162,394332,618032,961512,1487563,2286610,

%U 3496776,5316666,8044598,12110538,18147166,27068692,40203306,59459998,87587428,128522850

%N Expansion of g.f.: Product_{k>=1} 1+k*x^k/(1-x^k)^2.

%H Alois P. Heinz, <a href="/A163318/b163318.txt">Table of n, a(n) for n = 0..1000</a>

%p b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1) +add(b(n-i*j, i-1)*(j*i), j=1..n/i)))

%p end:

%p a:= n-> b(n, n):

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Feb 25 2013

%t terms = 40;

%t CoefficientList[Product[1 + k x^k/(1 - x^k)^2, {k, 1, terms}] + O[x]^terms, x] (* _Jean-François Alcover_, Nov 12 2020 *)

%Y Cf. A006906, A077285, A162506.

%K easy,nonn

%O 0,3

%A _Vladeta Jovovic_, Jul 24 2009