login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by antidiagonals where column k lists the numbers j whose largest divisor <= sqrt(j) is k.
30

%I #36 Jan 23 2023 09:04:52

%S 1,2,4,3,6,9,5,8,12,16,7,10,15,20,25,11,14,18,24,30,36,13,22,21,28,35,

%T 42,49,17,26,27,32,40,48,56,64,19,34,33,44,45,54,63,72,81,23,38,39,52,

%U 50,60,70,80,90,100,29,46,51,68,55,66,77,88,99,110,121,31,58,57,76,65,78,84,96,108,120,132,144

%N Square array read by antidiagonals where column k lists the numbers j whose largest divisor <= sqrt(j) is k.

%C This sequence is a permutation of the natural numbers A000027. Note that the first column is formed by 1 together with the prime numbers.

%C Column k contains exactly those numbers j=k*m where m is either a prime >= j or one of the numbers in row k of A163925. - _Franklin T. Adams-Watters_, Aug 12 2009

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv07.jpg">Illustration of initial terms of column 1: A008578</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv08.jpg">Illustration of initial terms of column 2: A161344</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv06.jpg">Illustration of initial terms of columns 1-4: A008578, A161344, A161345, A161424</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F Column k lists the numbers j such that A033676(j)=k.

%e Array begins:

%e 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, ...

%e 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, ...

%e 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, ...

%e 5, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, ...

%e 7, 14, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, ...

%e 11, 22, 27, 44, 50, 66, 84, 104, 126, 150, 176, 204, ...

%e 13, 26, 33, 52, 55, 78, 91, 112, 135, 160, 187, 216, ...

%e 17, 34, 39, 68, 65, 102, 98, 128, 153, 170, 198, 228, ...

%e 19, 38, 51, 76, 75, 114, 105, 136, 162, 190, 209, 264, ...

%e 23, 46, 57, 92, 85, 138, 119, 152, 171, 200, 220, 276, ...

%e 29, 58, 69, 116, 95, 174, 133, 184, 189, 230, 231, 348, ...

%e 31, 62, 87, 124, 115, 186, 147, 232, 207, 250, 242, 372, ...

%e ...

%p A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: # _R. J. Mathar_, Aug 09 2009

%t nmax = 12;

%t pm = Prime[nmax];

%t sDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];

%t Clear[col]; col[k_] := col[k] = Select[Range[k pm], sDiv[#] == k&];

%t T[n_, k_ /; 1 <= k <= Length[col[k]]] := col[k][[n]];

%t Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 15 2019 *)

%Y Rows 1-12: A000290, A002378, A005563, A164004, A100451, A164006, A164007, A164008, A164009, A164010, A164011, A164012.

%Y Columns 1-12: A008578, A161344, A161345, A161424, A161835, A162526, A162527, A162528, A162529, A162530, A162531, A162532.

%Y Another version: A163990.

%Y Cf. A000027, A000040, A033676, A147861, A163100, A164000.

%K nonn,tabl

%O 1,2

%A _Omar E. Pol_, Aug 07 2009

%E Edited by _R. J. Mathar_, Aug 01 2010

%E Example edited by _Jean-François Alcover_, Dec 15 2019