login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1

%I #14 Sep 08 2022 08:45:46

%S 1,45,1980,87120,3832290,168577200,7415481150,326196882000,

%T 14348955088710,631190926398780,27765226324720170,1221354364616557380,

%U 53725709508796162530,2363320544672336677560,103959241263364038810390

%N Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

%C The initial terms coincide with those of A170764, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A163231/b163231.txt">Table of n, a(n) for n = 0..600</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (43, 43, 43, -946).

%F G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).

%F a(n) = 43*a(n-1)+43*a(n-2)+43*a(n-3)-946*a(n-4). - _Wesley Ivan Hurt_, May 06 2021

%t CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(946*t^4-43*t^3-43*t^2 - 43*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {43, 43, 43, -946}, {45,1980,87120,3832290}, 20]] (* _G. C. Greubel_, Dec 11 2016 *)

%t coxG[{4, 946, -43}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Apr 30 2019 *)

%o (PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(946*t^4-43*t^3 - 43*t^2-43*t+1)) \\ _G. C. Greubel_, Dec 11 2016

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^4)/(1-44*x+989*x^4-946*x^5) )); // _G. C. Greubel_, Apr 30 2019

%o (Sage) ((1+x)*(1-x^4)/(1-44*x+989*x^4-946*x^5)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 30 2019

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009