Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 08 2020 17:44:09
%S 3,23,71,757,30671,1383331,245273927,3362110459,107752663194272623,
%T 5117886516250502670227,
%U 34633371587745726679416744736000996167729085703,114326045625240879227044995173712991937709388241980425799
%N Swinging Wilson quotients (A163210) which are primes.
%C a(14)-a(18) certified prime by Primo 4.2.0. a(17) = A163210(569) = P1239, a(18) = A163210(787) = P1812. - _Charles R Greathouse IV_, Dec 11 2016
%H G. C. Greubel, <a href="/A163211/b163211.txt">Table of n, a(n) for n = 1..16</a>
%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a>
%e The quotient (252+1)/11 = 23 is a swinging Wilson quotient and a prime, so 23 is a member.
%p A163211 := n -> select(isprime,A163210(n));
%t sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Select[PrimeQ][Table[a[n], {n, 1, 100}]] (* _G. C. Greubel_, Dec 10 2016 *)
%o (PARI) sf(n)=n!/(n\2)!^2
%o forprime(p=2,1e3, t=sf(p-1)\/p; if(isprime(t), print1(t", "))) \\ _Charles R Greathouse IV_, Dec 11 2016
%Y Cf. A163210, A163213, A163212, A163209, A007619.
%K nonn
%O 1,1
%A _Peter Luschny_, Jul 24 2009