login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/4)* L(n)^2 * F(n+1)^2 * L(n-1) * F(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
6

%I #15 Sep 08 2022 08:45:46

%S -1,1,27,540,9800,176176,3162159,56744793,1018249595,18271762300,

%T 327873509424,5883451505856,105574253853887,1894453118539345,

%U 33994581881622075,610008020755286076,10946149791725643704,196420688230338021808,3524626238354441796015,63246851602149831726825

%N a(n) = (1/4)* L(n)^2 * F(n+1)^2 * L(n-1) * F(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.

%C Natural bilateral extension (brackets mark index 0): ..., 9801, 539, 28, 0, 0, [-1], 1, 27, 540, 9800, 176176, ... This is A163195-reversed followed by A163197. That is, A163197(-n) = A163195(n-1).

%H G. C. Greubel, <a href="/A163197/b163197.txt">Table of n, a(n) for n = 0..500</a>

%H Stuart Clary and Paul D. Hemenway, <a href="http://dx.doi.org/10.1007/978-94-011-2058-6_12">On sums of cubes of Fibonacci numbers</a>, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (20,-35,-35,20,-1).

%F Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).

%F a(n) = (1/4)*L(n)^2*F(n+1)^2*L(n-1)*F(n+2).

%F a(n) = (1/20)*(F(6n+3) - 12*F(2n+1) - 10*(-1)^n).

%F a(n) = (1/4)*(F(2n+1)^3 - 3*F(2n+1) - 2*(-1)^n).

%F a(n) = Sum_{k=2..n} F(2k)^3 = A163199(n) if n is even.

%F a(n) = Sum_{k=1..n} F(2k)^3 = A163198(n) if n is odd.

%F a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = - 50*(-1)^n.

%F a(n) - 20 a(n-1) + 35 a(n-2) + 35 a(n-3) - 20 a(n-4) + a(n-5) = 0.

%F G.f.: (-1 + 21*x - 28*x^2)/(1 - 20*x + 35*x^2 + 35*x^3 - 20*x^4 + x^5) = -(1 - 21*x + 28*x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).

%F A163195(n) - a(n) = (-1)^n.

%t a[n_Integer] := (1/4)*LucasL[n]^2*Fibonacci[n+1]^2*LucasL[n-1]*Fibonacci[n+2]

%t LinearRecurrence[{20,-35,-35,20,-1},{-1,1,27,540,9800}, 50] (* or *) Table[(1/20)*(Fibonacci[6*n+3] - 12*Fibonacci[2*n+1] - 10*(-1)^n),{n,0,25}] (* _G. C. Greubel_, Dec 09 2016 *)

%o (PARI) Vec(-(1 - 21*x + 28*x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)) + O(x^50)) \\ _G. C. Greubel_, Dec 09 2016

%o (PARI) for(n=0,30, print((1/20)*(fibonacci(6*n+3) - 12*fibonacci(2*n+1) - 10*(-1)^n), ", ")) \\ _G. C. Greubel_, Dec 21 2017

%o (Magma) [(1/4)*(Lucas(n)*Fibonacci(n+1))^2*Lucas(n-1)*Fibonacci(n+2): n in [0..30]]; // _G. C. Greubel_, Dec 21 2017

%Y Cf. A163194, A163195, A163196, A163198, A163199.

%K sign,easy

%O 0,3

%A _Stuart Clary_, Jul 24 2009