login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 20*a(n-1)-93*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
1

%I #8 Sep 08 2022 08:45:46

%S 1,10,107,1210,14249,172450,2123843,26439010,331262801,4166428090,

%T 52521121307,662944613770,8374427993849,105834710796370,

%U 1337872412499443,16914820145926450,213874268556080801

%N a(n) = 20*a(n-1)-93*a(n-2) for n > 1; a(0) = 1, a(1) = 10.

%C Binomial transform of A152266. Tenth binomial transform of powers of 7 interleaved with zeros.

%H Harvey P. Dale, <a href="/A163192/b163192.txt">Table of n, a(n) for n = 0..900</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20, -93).

%F a(n) = ((10+sqrt(7))^n+(10-sqrt(7))^n)/2.

%F G.f.: (1-10*x)/(1-20*x+93*x^2).

%t LinearRecurrence[{20,-93},{1,10},40] (* _Harvey P. Dale_, Nov 01 2011 *)

%o (Magma) [ n le 2 select 9*n-8 else 20*Self(n-1)-93*Self(n-2): n in [1..17] ];

%Y Cf. A152266, A000420 (powers of 7).

%K nonn

%O 0,2

%A _Klaus Brockhaus_, Jul 22 2009