login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163160
a(n) = A162996(n) - R_n = round(kn * (log(kn)+1)) - R_n, with k = 2.216 and R_n = n-th Ramanujan Prime A104272(n) and where Abs(a(n)) < 2 * sqrt(A162996(n)) for n in [1..1000].
3
2, 0, 2, -1, -3, 1, -1, 2, 9, -6, 1, 7, -1, -11, -1, -5, -5, 6, -27, -17, -8, -1, 10, 2, 9, 10, -2, 7, -15, -4, -8, 0, -14, -8, -4, -2, 10, 19, 11, -1, 10, 12, -39, -27, -28, -20, -11, 2, 11, -9, 4, 15, 24, 33, 30, 3, 11, 14, 17, 14, -11, -7, 6, 18, 7, 18, 10, -31, -19, -9, -14
OFFSET
1,1
COMMENTS
A162996(n) approximates the {kn}-th prime number, which in turn approximates the n-th Ramanujan prime, with k = 2.216 nearly optimal for n in [1..1000] since a(n) - 2*sqrt(a(n)) < R_n < a(n) + 2*sqrt(a(n)) in that range. Since R_n ~ Prime(2n) ~ 2n * (log(2n)+1) ~ 2n * log(2n), whereas A162996(n) ~ Prime(kn) ~ kn * (log(kn)+1) ~ kn * log(kn), giving A162996(n) / R_n ~ k/2 = 2.216/2 = 1.108 which implies an asymptotic overestimate of about 10.8% (a better approximation would need k to depend on n and be asymptotic to 2). Consequently, a(n) - 2*sqrt(a(n)) < R_n < a(n) + 2*sqrt(a(n)) will fail pretty early (R_n falling below the lower bound) as n grows beyond 1000.
LINKS
CROSSREFS
Cf. A162996 (Round(kn * (log(kn)+1)), with k = 2.216 as an approximation of R_n = n-th Ramanujan Prime).
Cf. A104272 (Ramanujan primes: a(n) is the smallest number such that if x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x).
Sequence in context: A308263 A028932 A076473 * A306696 A237184 A029240
KEYWORD
sign
AUTHOR
Daniel Forgues, Jul 21 2009, Jul 29 2009
STATUS
approved