login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A163113
Fibonacci numbers containing equal numbers of prime digits and nonprime digits.
0
13, 21, 34, 1597, 2584, 6765, 121393, 514229, 14930352, 24157817, 7778742049, 365435296162, 44945570212853, 184551825793033096366333, 781774079430987230203437, 7896325826131730509282738943634332893686268675876375
OFFSET
1,1
COMMENTS
It is obvious that these numbers must contain an even number of digits.
This sequence is probably finite. The equivalent sequences in bases 4, 6, and 8 are probably infinite. - Franklin T. Adams-Watters, Aug 06 2009
EXAMPLE
24157817 is a Fibonacci number containing equal numbers of prime digits (2,5,7,7) and nonprime digits (4,1,8,1).
MATHEMATICA
pnpQ[n_]:=Module[{idn=IntegerDigits[n], len}, len=Length[idn]; EvenQ[len] && Count[idn, _?PrimeQ]==len/2]; Select[Fibonacci[Range[250]], pnpQ] (* Harvey P. Dale, May 01 2012 *)
PROG
(PARI) (mydigits(n, b=10)=local(r); r=[]; while(n>0, r=concat([n%b], r); n\=b); r); for(n=1, 500, v=mydigits(fibonacci(n)); np=sum(i=1, #v, isprime(v[i])); if(#v==2*np, print1(fibonacci(n)", ")))
CROSSREFS
Cf. A000045.
Sequence in context: A164451 A164432 A034292 * A164496 A164459 A164453
KEYWORD
nonn,base
AUTHOR
Parthasarathy Nambi, Jul 21 2009
EXTENSIONS
Edited and extended by Franklin T. Adams-Watters, Aug 06 2009
STATUS
approved