login
A163087
Product{k|n} k$. Here '$' denotes the swinging factorial function (A056040).
2
1, 1, 2, 6, 12, 30, 240, 140, 840, 3780, 15120, 2772, 221760, 12012, 960960, 9266400, 10810800, 218790, 7351344000, 923780, 16761064320, 3259095840, 3910915008, 16224936, 41977154419200, 2028117000, 249864014400
OFFSET
0,3
EXAMPLE
The set of positive divisors of 3 is {1,3}. Thus a(3) = 1$ * 3$ = 1 * 6 = 6.
MAPLE
a := proc(n) local i; mul(i, i=map(swing, numtheory[divisors](n))) end:
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Product[sf[k], {k, Divisors[n]}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 26 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 21 2009
STATUS
approved