login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 12*a(n-1) - 31*a(n-2) for n > 1; a(0) = 2, a(1) = 17.
2

%I #7 Sep 08 2022 08:45:46

%S 2,17,142,1177,9722,80177,660742,5443417,44838002,369310097,

%T 3041743102,25052304217,206333614442,1699381942577,13996241263222,

%U 115274054938777,949405180105442,7819366458163217,64400836914689902,530409682773219097

%N a(n) = 12*a(n-1) - 31*a(n-2) for n > 1; a(0) = 2, a(1) = 17.

%C Binomial transform of A162773. Inverse binomial transform of A163067.

%H G. C. Greubel, <a href="/A163066/b163066.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-31).

%F a(n) = ((2+sqrt(5))*(6+sqrt(5))^n + (2-sqrt(5))*(6-sqrt(5))^n)/2.

%F G.f.: (2-7*x)/(1-12*x+31*x^2).

%t CoefficientList[Series[(2-7*x)/(1-12*x+31*x^2), {x,0,50}],x] (* or *) LinearRecurrence[{12,-31}, {2,17}, 30] (* _G. C. Greubel_, Dec 22 2017 *)

%o (Magma) [ n le 2 select 15*n-13 else 12*Self(n-1)-31*Self(n-2): n in [1..20] ];

%o (PARI) x='x+O('x^30); Vec((2-7*x)/(1-12*x+31*x^2)) \\ _G. C. Greubel_, Dec 22 2017

%Y Cf. A162773, A163067.

%K nonn

%O 0,1

%A _Klaus Brockhaus_, Jul 20 2009