login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162985
Number of Dyck paths with no UUU's and no DDD's of semilength n and having no UUDUDD's (U=(1,1), D=(1,-1)).
1
1, 1, 2, 3, 6, 12, 25, 53, 114, 249, 550, 1227, 2760, 6253, 14256, 32682, 75293, 174224, 404741, 943622, 2207135, 5177817, 12179904, 28722736, 67890481, 160812128, 381671061, 907529504, 2161622683, 5157014539, 12321750366, 29482362166
OFFSET
0,3
COMMENTS
a(n) = A162984(n,0).
FORMULA
G.f. = G(z) satisfies G = 1 + zG + z^2*G + z^3*G(G-1).
D-finite with recurrence (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-n+3)*a(n-4) +(-2*n+9)*a(n-5) +(n-6)*a(n-6)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(3)=3 because we have UDUDUD, UDUUDD, and UUDDUD.
MAPLE
G := ((1-z-z^2+z^3-sqrt(1-2*z-z^2-z^4-2*z^5+z^6))*1/2)/z^3: Gser := series(G, z = 0, 36): seq(coeff(Gser, z, n), n = 0 .. 31);
CROSSREFS
Cf. A162984.
Sequence in context: A004111 A032235 A192805 * A052523 A262430 A204855
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 11 2009
STATUS
approved