login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5*a(n-2) for n > 2; a(1) = 2, a(2) = 5.
4

%I #7 Sep 08 2022 08:45:46

%S 2,5,10,25,50,125,250,625,1250,3125,6250,15625,31250,78125,156250,

%T 390625,781250,1953125,3906250,9765625,19531250,48828125,97656250,

%U 244140625,488281250,1220703125,2441406250,6103515625,12207031250

%N a(n) = 5*a(n-2) for n > 2; a(1) = 2, a(2) = 5.

%C Binomial transform is A162770, second binomial transform is A001077 without initial 1, third binomial transform is A162771, fourth binomial transform is A162772, fifth binomial transform is A162773.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,5).

%F a(n) = (3-(-1)^n)*5^(1/4*(2*n-1+(-1)^n))/2.

%F G.f.: x*(2+5*x)/(1-5*x^2).

%F a(n) = A026383(n) for n >= 1.

%o (Magma) [ n le 2 select 3*n-1 else 5*Self(n-2): n in [1..29] ];

%Y Cf. A000351 (powers of 5), A026383, A001077, A162770, A162771, A162772, A162773.

%K nonn,easy

%O 1,1

%A _Klaus Brockhaus_, Jul 19 2009