login
A162899
Partial sums of [A052938(n)^2].
1
1, 10, 14, 30, 39, 64, 80, 116, 141, 190, 226, 290, 339, 420, 484, 584, 665, 786, 886, 1030, 1151, 1320, 1464, 1660, 1829, 2054, 2250, 2506, 2731, 3020, 3276, 3600, 3889, 4250, 4574, 4974, 5335, 5776, 6176, 6660, 7101, 7630, 8114, 8690, 9219, 9844, 10420
OFFSET
0,2
COMMENTS
Another plausible solution, besides A115391 and A116955, to A115603: Each additional term of the partial sums here is the square of a number that alternately differs +2, -1, +2, -1, ..., from the previous number that is squared: a(3) = 30 = 1^2 + 3^2 + 2^2 + 4^2, where 1, 3, 2, 4 display this pattern.
FORMULA
a(n) = sum(k=0..n, A052938(n)^2).
a(n) = (60-36*(-1)^n+(109-9*(-1)^n)*n+24*n^2+2*n^3)/24. G.f.: (4*x^4-4*x^3-7*x^2+8*x+1) / ((x-1)^4*(x+1)^2). - Colin Barker, Jul 18 2013
MATHEMATICA
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 10, 14, 30, 39, 64}, 50] (* Harvey P. Dale, Sep 26 2020 *)
PROG
(PARI) a(n) = sum(k=0, n, (if(k%2==0, k+2, k+5)/2)^2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rick L. Shepherd, Jul 16 2009
STATUS
approved