login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form (x^2 + y^3)/(x+y), with x,y > 1 two distinct integers.
0

%I #7 Apr 22 2019 01:20:51

%S 3,7,13,31,43,67,73,109,139,149,157,179,193,211,229,241,307,317,379,

%T 389,421,457,463,491,499,593,601,647,661,751,757,769,829,839,937,1009,

%U 1021,1033,1123,1171,1213,1231,1283,1319,1381,1459,1481,1483,1549,1621

%N Primes of the form (x^2 + y^3)/(x+y), with x,y > 1 two distinct integers.

%e a(1) = 3 = (1^2 + 2^3)/(1+2).

%e a(2) = 7 = (1^2 + 3^3)/(1+3) or (6^2 + 3^3)/(6+3).

%e a(3) = 13 = (1^2 + 4^3)/(1+4) or (12^2 + 4^3)/ (12+4).

%e a(4) = 31 = (1^2 + 6^3)/(1+6).

%p isA162869 := proc(p) local a,b ; if isprime(p) then for b from 1 to p do for d in numtheory[divisors](b^2*(b+1)) do a := d-b ; if a > 1 and (a^2+b^3)= p*(a+b) then RETURN(true); fi; od: od: RETURN(false) ; else false; fi; end:

%p for n from 1 do p := ithprime(n) ; if isA162869(p) then printf("%d,\n",p) ; fi; od: # _R. J. Mathar_, Sep 22 2009

%t f[a_,b_]:=(a^2+b^3)/(a+b); lst={};Do[Do[If[f[a,b]==IntegerPart[f[a,b]], If[a!=b&&PrimeQ[f[a,b]],AppendTo[lst,f[a,b]]]],{b,4*6!}],{a,4*6!}]; Take[Union[lst],50]

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jul 15 2009

%E Comment turned into examples by _R. J. Mathar_, Sep 22 2009