Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 07 2024 01:22:20
%S 7,11,19,43,67,163,211,283,331,523,547,691,787,907,1051,1123,1171,
%T 1531,1723,1867,2011,2083,2251,2347,2371,2467,2707,2731,2803,2971,
%U 3187,3307,3547,3643,3907,3931,4051,4243,4363,4603,4651,4723,5107,5227,5443,5923
%N Primes of the form 4p - 1, p a prime.
%C If 4p - 1 is prime then n^2 + n + p = p(4p - 1) for some n = 1, 2, 3, ... [Proof. Let n + 1 = 2p, etc.]
%C From _Alonso del Arte_, Jan 14 2024: (Start)
%C The first six terms correspond to rings of algebraic integers of Q(sqrt(-a(n))) which are unique factorization domains.
%C In the ring of algebraic integers of Q(sqrt(-a(n))), the corresponding prime p = (a(n) + 1)/4 is divisible by 1/2 - sqrt(-a(n))/2 and 1/2 + sqrt(-a(n))/2, both of those being algebraic integers with minimal polynomial x^2 - x + p. For example, in Q(sqrt(-163)), we see that (1/2 - sqrt(-163)/2)(1/2 + sqrt(-163)/2) = 1/4 + 163/4 = 41, with both of the divisors having the minimal polynomial x^2 - x + 41. (End)
%F a(n) >> n log^2 n. - _Charles R Greathouse IV_, Jun 14 2022
%t Select[Prime[Range[1000]], PrimeQ[(# + 1)/4] &] (* _Alonso del Arte_, Jan 14 2024 *)
%o (PARI) is(n)=isprime(n) && isprime(4*n-1) \\ _Charles R Greathouse IV_, Jun 14 2022
%o (Scala) def isPrime(num: Int): Boolean = Math.abs(num) match {
%o case 0 => false; case 1 => false; case n => (2 to Math.floor(Math.sqrt(n)).toInt) forall (p => n % p != 0)
%o }
%o ((1 to 2500).map(4 * _ - 1)).filter(n => isPrime(n) && isPrime((n + 1)/4)) // _Alonso del Arte_, Jan 14 2024
%Y Cf. A062737 for the corresponding primes p.
%Y Overlaps with A003173, the Heegner numbers (last six terms of that one match the first six of this one).
%K nonn,easy
%O 1,1
%A _Daniel Tisdale_, Jul 14 2009
%E More terms from _N. J. A. Sloane_, Jul 19 2009