login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*a(n-2) for n > 2; a(1) = 5, a(2) = 3.
5

%I #26 Sep 08 2022 08:45:46

%S 5,3,15,9,45,27,135,81,405,243,1215,729,3645,2187,10935,6561,32805,

%T 19683,98415,59049,295245,177147,885735,531441,2657205,1594323,

%U 7971615,4782969,23914845,14348907,71744535,43046721,215233605,129140163,645700815,387420489

%N a(n) = 3*a(n-2) for n > 2; a(1) = 5, a(2) = 3.

%C Binomial transform is A162562.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,3).

%F a(n) = (3-2*(-1)^n)*3^(1/4*(2*n-1+(-1)^n)).

%F G.f.: x*(5+3*x)/(1-3*x^2)

%t nxt[{a_,b_}]:={b,3a}; NestList[nxt,{5,3},40][[All,1]] (* or *) LinearRecurrence[ {0,3},{5,3},40] (* _Harvey P. Dale_, May 29 2021 *)

%o (Magma) [ n le 2 select 7-2*n else 3*Self(n-2): n in [1..34] ];

%Y Cf. A162562, A162436, A162766.

%K nonn,easy

%O 1,1

%A _Klaus Brockhaus_, Jul 20 2009

%E a(35)-a(36) from _Yifan Xie_, Jul 20 2022