login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 16*a(n-1)-61*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
1

%I #7 Sep 08 2022 08:45:46

%S 1,9,83,779,7401,70897,682891,6601539,63968273,620798489,6030711171,

%T 58622670907,570089353081,5545446723969,53951697045563,

%U 524954902566899,5108224921291041,49709349684075817,483747874746459571

%N a(n) = 16*a(n-1)-61*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

%C Eighth binomial transform of A108411. Binomial transform of A162758.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16, -61).

%F a(n) = ((3+sqrt(3))*(8+sqrt(3))^n+(3-sqrt(3))*(8-sqrt(3))^n)/6.

%F G.f.: (1-7*x)/(1-16*x+61*x^2).

%t LinearRecurrence[{16,-61},{1,9},30] (* _Harvey P. Dale_, Jan 18 2014 *)

%o (Magma) [ n le 2 select 8*n-7 else 16*Self(n-1)-61*Self(n-2): n in [1..19] ];

%Y Cf. A108411 (powers of 3 repeated), A162758.

%K nonn

%O 0,2

%A _Klaus Brockhaus_, Jul 13 2009