login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose number of divisors is not a power of 2.
18

%I #29 Jan 04 2023 15:04:59

%S 4,9,12,16,18,20,25,28,32,36,44,45,48,49,50,52,60,63,64,68,72,75,76,

%T 80,81,84,90,92,96,98,99,100,108,112,116,117,121,124,126,132,140,144,

%U 147,148,150,153,156,160,162,164,169,171,172,175,176,180,188,192,196,198

%N Numbers whose number of divisors is not a power of 2.

%C A number m is a term if and only if it has at least one non-infinitary divisor, or A000005(m) > A037445(m). - _Vladimir Shevelev_, Feb 23 2017

%C The asymptotic density of this sequence is 1 - A327839 = 0.3121728605... - _Amiram Eldar_, Jul 28 2020

%H Reinhard Zumkeller, <a href="/A162643/b162643.txt">Table of n, a(n) for n = 1..10000</a>

%F A209229(A000005(a(n))) = 0. - _Reinhard Zumkeller_, Nov 15 2012

%t Select[Range@ 192, ! IntegerQ@ Log2@ DivisorSigma[0, #] &] (* _Michael De Vlieger_, Feb 24 2017 *)

%o (Haskell)

%o a162643 n = a162643_list !! (n-1)

%o a162643_list = filter ((== 0) . a209229 . a000005) [1..]

%o -- _Reinhard Zumkeller_, Nov 15 2012

%o (Python)

%o from itertools import count, islice

%o from sympy import factorint

%o def A162643_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda n:any(map(lambda m:((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1)))

%o A162643_list = list(islice(A162643_gen(),30)) # _Chai Wah Wu_, Jan 04 2023

%Y Complement of A036537.

%Y A072587 is a subsequence.

%Y Cf. A000005, A037445, A209229, A327839

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Jul 08 2009