%I #13 Mar 02 2024 13:49:03
%S 1,5,8,11,19,27,19,34,49,64,29,53,77,101,125,41,76,111,146,181,216,55,
%T 103,151,199,247,295,343,71,134,197,260,323,386,449,512,89,169,249,
%U 329,409,489,569,649,729,109,208,307,406,505,604,703,802,901,1000,131,251
%N Triangle read by rows in which row n lists n terms, starting with n^2+n-1, with gaps = n^2-1 between successive terms.
%C Note that the last term of the n-th row is the n-th cube A000578(n).
%H Harvey P. Dale, <a href="/A162612/b162612.txt">Table of n, a(n) for n = 1..1000</a>
%F Sum_{k=1..n} T(n,k)= n*(n^3 + n^2 + n - 1)/2 (row sums). - _R. J. Mathar_, Jul 20 2009
%e Triangle begins:
%e 1;
%e 5, 8;
%e 11, 19, 27;
%e 19, 34, 49, 64;
%e 29, 53, 77, 101, 125;
%e 41, 76, 111, 146, 181, 216;
%t Table[NestList[#+n^2-1&,n^2+n-1,n-1],{n,20}]//Flatten (* _Harvey P. Dale_, Mar 02 2024 *)
%o (PARI) T(n,k)=n+k*(n^2-1) \\ _Franklin T. Adams-Watters_, Aug 06 2009
%Y Cf. A000578, A028387, A159797, A159798, A162610, A162611, A162613.
%K easy,nonn,tabl
%O 1,2
%A _Omar E. Pol_, Jul 09 2009
%E More terms from _Franklin T. Adams-Watters_, Aug 06 2009