Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 08 2023 11:22:10
%S 1,2,8,39,205,1136,6548,38882,236260,1462131,9184413,58408588,
%T 375330536,2433325315,15896742423,104546968252,691608993478,
%U 4599024778431,30724413312953,206114347293697,1387917616331135,9377747277136328
%N Expansion of (1/(1-x))*c(x/(1-x)^4), c(x) the g.f. of A000108.
%C Partial sums are A162477. Partial sums of A162475.
%F G.f.: 1/(1-x-x/((1-x)^3-x/(1-x-x/((1-x)^3-x/(1-x-x/((1-x)^3-x/(1-... (continued fraction);
%F a(n) = Sum_{k=0..n} C(n+3k,n-k)*A000108(k).
%F (n+1)*(2*n-3)*a(n) -(4*n-3)*(4*n-5)*a(n-1) +3*(4*n^2-14*n+11)*a(n-2) +(-8*n^2+40*n-27)*a(n-3) +(2*n-1)*(n-6)*a(n-4) = 0. - _R. J. Mathar_, Nov 15 2011
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jul 04 2009