login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162307
Primes of the form k*(k+2)/3 - 2, k > 0.
2
3, 19, 31, 83, 131, 223, 383, 479, 643, 1279, 1823, 2131, 2239, 2579, 2819, 3331, 4483, 4639, 6163, 6719, 7103, 7699, 8963, 9631, 9859, 10559, 11779, 13331, 14143, 14419, 15263, 17939, 19843, 21503, 22531, 24659, 25759, 28031, 29599, 30803, 35423
OFFSET
1,1
COMMENTS
Or: primes of the form k*(k+1)*(k+2)/(k+(k+1)+(k+2))-2.
Generated by k=3, 7, 9, 15, 19, 25, 33, 37, 43, ....
Primes p such that 3*p+7 is a square. - Vincenzo Librandi, Dec 05 2015
Primes of the forms 3*k^2 + 2*k - 2 and 3*k^2 + 4*k - 1. - Robert Israel, Nov 27 2017
LINKS
EXAMPLE
k=3 contributes a term because 3*(3+2)/3 - 2 = 3 = a(1) is prime.
MAPLE
select(isprime, [seq(seq((3*j+i)*(3*j+i+2)/3-2, i=0..1), j=1..1000)]); # Robert Israel, Nov 27 2017
MATHEMATICA
f[n_]:=(n*(n+1)*(n+2))/(n+(n+1)+(n+2))-2; lst={}; Do[p=f[n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 6!}]; lst
Select[Table[(k(k+2))/3-2, {k, 350}], PrimeQ] (* Harvey P. Dale, May 10 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(45000) | IsSquare(3*p+7)]; // Vincenzo Librandi, Dec 05 2015
(PARI) forprime(p=2, 1e5, if(issquare(3*p+7), print1(p , ", "))) \\ Altug Alkan, Dec 05 2015
CROSSREFS
Sequence in context: A107165 A066811 A269414 * A128069 A056246 A360081
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition simplified by R. J. Mathar, Jul 02 2009
STATUS
approved