login
Number of reduced words of length n in the Weyl group B_48.
0

%I #5 Jul 19 2015 10:20:50

%S 1,48,1175,19552,248723,2579312,22706404,174482000,1194358970,

%T 7396268880,41942496051,219939217728,1075086490926,4931595192160,

%U 21350092231441,87658196804688,342762976614961,1281150739056160

%N Number of reduced words of length n in the Weyl group B_48.

%C Computed with MAGMA using commands similar to those used to compute A161409.

%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

%F G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Nov 30 2009