%I #12 Dec 27 2023 21:21:11
%S 1,1,2,1,2,3,4,1,3,5,6,1,2,4,7,8,9,10,1,5,11,12,1,2,3,6,13,14,15,16,1,
%T 7,17,18,1,2,4,8,19,20,21,22,1,3,9,23,24,25,26,27,28,1,2,5,10,29,30,1,
%U 11,31,32,33,34,35,36,1,2,3,4,6,12,37,38,39,40
%N Triangle read by rows in which row n lists the divisors of n, the n-th prime and the consecutive composites that are greater than the n-th prime, with a(0)=1.
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polprdipi.jpg">Illustration of initial terms: Divisors and pi(x)</a>
%H Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>
%e Triangle begins:
%e 1;
%e 1,(2);
%e 1,.2,(3),4;
%e 1,....3,...(5),6;
%e 1,.2,....4,......(7),8,.9,10;
%e 1,..........5,..............(11),12;
%e 1,.2,.3,.......6,..................(13),14,15,16;
%e 1,................7,............................(17),18;
%e 1,.2,....4,..........8,................................(19),20,21,22;
%Y Cf. A000005, A000040, A000720, A027750, A018253, A160811, A160812, A161205, A161344, A161345, A161424, A006446, A161827, A161828, A161835.
%K easy,nonn,tabf
%O 0,3
%A _Omar E. Pol_, Jun 30 2009