login
A162153
Differences between the sum of consecutive composites and the prime that precedes them.
1
1, 1, 20, 1, 32, 1, 44, 107, 1, 139, 80, 1, 92, 203, 227, 1, 259, 140, 1, 307, 164, 347, 562, 200, 1, 212, 1, 224, 1447, 260, 539, 1, 1157, 1, 619, 643, 332, 683, 707, 1, 1493, 1, 392, 1, 2056, 2176, 452, 1, 464, 947, 1, 1973, 1019, 1043, 1067, 1, 1099, 560, 1, 2309
OFFSET
1,3
LINKS
FORMULA
a(n) = A054265(n+1) - A000040(n+1). - R. J. Mathar, Jun 27 2009
a(n) = (prime(n+2)^2 - prime(n+1)^2 - prime(n+2) - 3*prime(n+1))/2. - Robert Israel, Jul 19 2018
EXAMPLE
a(1) = 4-3 = 1;
a(2) = 6-5 = 1;
a(3) = (8+9+10)-7 = 20;
a(4) = 12-11 = 1;
a(5) = (14+15+16)-13 = 32;
a(6) = 18-17 = 1;
a(7) = (20+21+22)-19 = 44;
a(8) = (24+25+26+27+28)-23 = 107; etc.
MAPLE
Primes:= select(isprime, [2, seq(i, i=3..1000, 2)]):
seq((Primes[i+1]^2-Primes[i+1]-Primes[i]^2-3*Primes[i])/2, i=2..nops(Primes)-1); # Robert Israel, Jul 18 2018
CROSSREFS
Cf. A000040, A054265, A155752 (n for which a(n)=1).
Sequence in context: A140116 A084923 A141589 * A040419 A200092 A164812
KEYWORD
nonn
AUTHOR
Claudio Meller, Jun 26 2009
EXTENSIONS
Edited and corrected by Robert Israel, Jul 18 2018
STATUS
approved