login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A sequence related to the recurrence relations of the right hand columns of the EG1 triangle A162005
7

%I #2 Mar 30 2012 18:59:45

%S 1,-1,1,-11,19,-9,1,-46,663,-3748,7711,-6606,2025,1,-130,6501,-163160,

%T 2236466,-17123340,71497186,-154127320,174334221,-98986050,22325625,1,

%U -295,36729,-2549775,109746165,-3080128275,57713313405,-727045264875

%N A sequence related to the recurrence relations of the right hand columns of the EG1 triangle A162005

%C The recurrence relation RR(n) = 0 of the n-th right hand column can be found with RR(n) = expand( product((1-(2*k-1)^2*z)^(n-k+1),k=1..n),z) = 0 and replacing z^p by a(n-p).

%C The polynomials in the numerators of the generating functions GF(z) of the coefficients that precede the a(n), a(n-1), a(n-2) and a(n-3) sequences, see A000012, A006324, A162012 and A162013, are symmetrical. This phenomenon leads to the sequence [1, 1, 6, 1, 19, 492, 1218, 492, 19 , 9, 3631, 115138, 718465, 1282314, 718465, 115138, 3631, 9].

%F RR(n) = expand( product((1-(2*k-1)^2*z)^(n-k+1),k=1..n),z) with n = 1, 2, 3, .. . The coefficients of these polynomials lead to the sequence given above.

%e The recurrence relations for the first few right hand columns:

%e n = 1: a(n) = 1*a(n-1)

%e n = 2: a(n) = 11*a(n-1)-19*a(n-2)+9*a(n-3)

%e n = 3: a(n) = 46*a(n-1)-663*a(n-2)+3748*a(n-3)-7711*a(n-4)+6606*a(n-5)-2025*a(n-6)

%e n = 4: a(n) = 130*a(n-1)-6501*a(n-2)+163160*a(n-3)-2236466*a(n-4)+17123340*a(n-5)-71497186*a(n-6)+154127320*a(n-7)-174334221*a(n-8)+98986050*a(n-9)-22325625*a(n-10)

%p nmax:=5; for n from 1 to nmax do RR(n) := expand(product((1-(2*k-1)^2*z)^(n-k+1), k=1..n), z) od: T:=1: for n from 1 to nmax do for m from 0 to(n)*(n+1)/2 do a(T):= coeff(RR(n), z, m): T:=T+1 od: od: seq(a(k), k=1..T-1);

%Y A000012, A004004 (2x), A162008, A162009 and A162010 are the first five right hand columns of EG1 triangle A162005.

%Y A000124 (the Lazy Caterer's sequence) gives the number of terms of the RR(n).

%Y A006324, A162012 and A162013 equal the absolute values of the coefficients that precede the a(n-1), a(n-2) and a(n-3) factors of the RR(n).

%K easy,sign,tabf

%O 1,4

%A _Johannes W. Meijer_, Jun 27 2009