login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Base-15 Armstrong or narcissistic numbers (written in base 10).
13

%I #28 Nov 05 2020 06:46:09

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,113,128,2755,3052,5059,49074,49089,

%T 386862,413951,517902,15219156,18605333,38009273,40082196,40310423,

%U 40868227,47527794,100128060,100128061,100128188,104189152,105464820

%N Base-15 Armstrong or narcissistic numbers (written in base 10).

%C Whenever 15|a(n) (n = 32, 36, 40, 86, 100, 135, 143, 194, 197, 201), then a(n+1) = a(n) + 1. Zero also satisfies the definition (n = Sum_{i=1..k} d[i]^k where d[1..k] are the base-15 digits of n), but this sequence only considers positive terms. - _M. F. Hasler_, Nov 22 2019

%H Joseph Myers, <a href="/A161952/b161952.txt">Table of n, a(n) for n = 1..202</a> (the full list of terms, from Winter)

%H Henk Koppelaar and Peyman Nasehpour, <a href="https://arxiv.org/abs/2008.08187">On Hardy's Apology Numbers</a>, arXiv:2008.08187 [math.NT], 2020.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NarcissisticNumber.html">Narcissistic Number</a>

%H D. T. Winter, <a href="http://ftp.cwi.nl/dik/Armstrong">Table of Armstrong Numbers</a>

%t Select[Range[10^7], # == Total[IntegerDigits[#, 15]^IntegerLength[#, 15]] &] (* _Michael De Vlieger_, Nov 04 2020 *)

%o (PARI) select( is_A161952(n)={n==vecsum([d^#n|d<-n=digits(n,15)])}, [1..10^5]) \\ _M. F. Hasler_, Nov 22 2019

%Y In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161953 (base 16).

%K base,fini,full,nonn

%O 1,2

%A _Joseph Myers_, Jun 22 2009

%E Terms sorted in increasing order by _Pontus von Brömssen_, Mar 03 2019