login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers such that A010060(n) = A010060(n+6).
5

%I #38 Apr 16 2023 21:44:40

%S 0,1,2,3,6,7,8,9,12,13,16,17,18,19,22,23,24,25,26,27,30,31,32,33,34,

%T 35,38,39,40,41,44,45,48,49,50,51,54,55,56,57,60,61,64,65,66,67,70,71,

%U 72,73,76,77,80,81,82,83,86,87,88,89,90,91,94,95,96,97,98,99,102,103,104,105,108

%N Numbers such that A010060(n) = A010060(n+6).

%C Let A=Axxxxxx be any sequence from OEIS. Denote by A^* the intersection of the union of sequences {2*A(n)+j}, j=0,1, and the union of sequences {4*A(n)+k}, k=-2,-1,0,1. Then the sequence is the union of (A079523)^* and (A121539)^*.

%H G. C. Greubel, <a href="/A161824/b161824.txt">Table of n, a(n) for n = 1..10000</a>

%H J.-P. Allouche, <a href="http://arxiv.org/abs/1401.3727">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, arXiv:1401.3727 [math.NT], 2014.

%H J.-P. Allouche, <a href="http://dx.doi.org/10.5802/jtnb.906">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.

%H Vladimir Shevelev, <a href="http://arXiv.org/abs/0907.0880">Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence</a>, arXiv:0907.0880 [math.NT], 2009-2012.

%t tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 6000, n++, If[tm[n] == tm[n + 6], Sow[n]]]][[2, 1]] (* _G. C. Greubel_, Jan 05 2018 *)

%o (PARI) is(n)=hammingweight(n)%2==hammingweight(n+6)%2 \\ _Charles R Greathouse IV_, Aug 20 2013

%Y Cf. A161817, A161674, A161673, A161639, A161641, A161627, A161579, A161580, A121539, A131323, A036554, A010060, A079523, A081706.

%K nonn,base

%O 1,3

%A _Vladimir Shevelev_, Jun 20 2009

%E Terms a(40) onwards added by _G. C. Greubel_, Jan 05 2018

%E Offset corrected by _Mohammed Yaseen_, Mar 29 2023