OFFSET
39,1
COMMENTS
Where exp^(Pi*sqrt163) is the Ramanujan constant and 70^2 is related to the norm vector 0 of the Leech lattice where 1^2 + 2^2 + 3^2 + ... + 22^2 + 23^2 + 24^2 = 70^2. A curiosity is: exp^2(Pi*sqrt163)*70^2 ~ hc/piGm^2 where all physics values are CODATA 2006 and m = neutron mass and exp^2(Pi*sqrt163)*70^2 = 3.377368...x 10^38 and hc/piGm^2 = 3.37700 x 10^38 (+- 0.00050) where 0.00050 = u_c which is the combined standard uncertainty.
This can also be expressed in a symmetric form in terms of the square of the neutron mass in units of Planck mass: where hc/2PiGm^2 = (Mp/m)^2 (Mp = Planck mass and m = neutron mass) and (exp^2(Pi*sqrt163)70^2)/2 ~ (Mp/m)^2. Note the divisor 2 in this case, which yields (exp^2(Pi*sqrt163)*70^2)/2 = 168868437938467735733159816253012231600.00000040115967. - Mark A. Thomas, Jul 02 2009
LINKS
G. C. Greubel, Table of n, a(n) for n = 39..10038
R. Munafo, Notable Properties of Specific Numbers
M. A. Thomas, Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies, HAL preprint Id: hal-01232022, 2015.
M. A. Thomas, Number Theoretic Structural Approach to Dimensionless Physics Forms, HAL preprint Id: hal-01580821 [math.NT], 2017.
FORMULA
Equals exp(2*Pi*sqrt(163))*70^2.
EXAMPLE
337736875876935471466319632506024463200.00000080231935662524957710...
MAPLE
evalf((70*exp(Pi*sqrt(163)))^2, 120); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
First@ RealDigits[Exp[Pi Sqrt[163]]^2 70^2, 10, 105] (* Mark A. Thomas, Jun 18 2009, edited by Michael De Vlieger, Feb 19 2018 *)
PROG
(PARI) default(realprecision, 100); exp(2*Pi*sqrt(163))*70^2 \\ G. C. Greubel, Oct 24 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Exp(2*Pi(R)*Sqrt(163))*70^2; // G. C. Greubel, Oct 24 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Mark A. Thomas, Jun 18 2009
STATUS
approved