login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161771
Decimal expansion of (70*exp(Pi*sqrt(163)))^2.
5
3, 3, 7, 7, 3, 6, 8, 7, 5, 8, 7, 6, 9, 3, 5, 4, 7, 1, 4, 6, 6, 3, 1, 9, 6, 3, 2, 5, 0, 6, 0, 2, 4, 4, 6, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 2, 3, 1, 9, 3, 5, 6, 6, 2, 5, 2, 4, 9, 5, 7, 7, 1, 0, 4, 4, 1, 2, 4, 0, 6, 5, 9, 7, 4, 0, 9, 9, 7, 1, 0, 0, 6, 8, 5, 9, 8, 5, 1, 9, 3, 7, 0, 6, 5, 2, 2, 3, 2, 2, 8, 1, 6, 9
OFFSET
39,1
COMMENTS
Where exp^(Pi*sqrt163) is the Ramanujan constant and 70^2 is related to the norm vector 0 of the Leech lattice where 1^2 + 2^2 + 3^2 + ... + 22^2 + 23^2 + 24^2 = 70^2. A curiosity is: exp^2(Pi*sqrt163)*70^2 ~ hc/piGm^2 where all physics values are CODATA 2006 and m = neutron mass and exp^2(Pi*sqrt163)*70^2 = 3.377368...x 10^38 and hc/piGm^2 = 3.37700 x 10^38 (+- 0.00050) where 0.00050 = u_c which is the combined standard uncertainty.
This can also be expressed in a symmetric form in terms of the square of the neutron mass in units of Planck mass: where hc/2PiGm^2 = (Mp/m)^2 (Mp = Planck mass and m = neutron mass) and (exp^2(Pi*sqrt163)70^2)/2 ~ (Mp/m)^2. Note the divisor 2 in this case, which yields (exp^2(Pi*sqrt163)*70^2)/2 = 168868437938467735733159816253012231600.00000040115967. - Mark A. Thomas, Jul 02 2009
LINKS
M. A. Thomas, Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies, HAL preprint Id: hal-01232022, 2015.
M. A. Thomas, Number Theoretic Structural Approach to Dimensionless Physics Forms, HAL preprint Id: hal-01580821 [math.NT], 2017.
FORMULA
Equals exp(2*Pi*sqrt(163))*70^2.
EXAMPLE
337736875876935471466319632506024463200.00000080231935662524957710...
MAPLE
evalf((70*exp(Pi*sqrt(163)))^2, 120); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
First@ RealDigits[Exp[Pi Sqrt[163]]^2 70^2, 10, 105] (* Mark A. Thomas, Jun 18 2009, edited by Michael De Vlieger, Feb 19 2018 *)
PROG
(PARI) default(realprecision, 100); exp(2*Pi*sqrt(163))*70^2 \\ G. C. Greubel, Oct 24 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Exp(2*Pi(R)*Sqrt(163))*70^2; // G. C. Greubel, Oct 24 2018
CROSSREFS
Near relation to A160514 and A160515.
Sequence in context: A324877 A359947 A201932 * A160515 A105670 A283996
KEYWORD
nonn,cons
AUTHOR
Mark A. Thomas, Jun 18 2009
STATUS
approved