login
A161735
Primes that are the difference between a fourth power and a positive cube.
0
17, 73, 113, 131, 229, 409, 443, 617, 673, 739, 953, 1153, 1171, 1889, 2393, 5087, 6217, 6553, 8669, 9433, 9973, 11321, 11897, 13877, 14633, 14737, 15823, 17377, 18539, 19081, 19441, 20393, 20611, 21841, 25469, 26249, 26833, 28649, 29599
OFFSET
1,1
COMMENTS
There are primes like p = 20393, 3905513, 5177033, 28398833, or 10877895569 which have more than one representation p=x^4-y^3, with x,y>=1.
My guess is that the number of duplicates is infinite.
FORMULA
If x^4-y^3 is prime for integers x >=1, y>=1, list it.
PROG
(PARI) difffourthcube(n) =
{
local(a, c=0, c2=0, j, k, y);
a=vector(floor(n^2/log(n^2)));
for(j=1, n,
for(k=1, n,
y=j^4-k^3;
if(ispseudoprime(y),
c++;
\\ print(j", "k", "y);
a[c]=y;
);
);
);
a=vecsort(a);
for(j=2, c,
if(a[j]!=a[j-1]&&a[j]!=0,
c2++;
print1(a[j]", ");
if(c2>100, break);
);
);
}
CROSSREFS
Sequence in context: A043194 A043974 A141972 * A142648 A002189 A002224
KEYWORD
nonn
AUTHOR
Cino Hilliard, Jun 17 2009
STATUS
approved