Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 17 2018 19:05:27
%S 0,1,3,18,2,1,1,1,10,1,9,2,1,5,1,3,1,4,1,1,1,1,1,3,3,2,7,17,1,2,1,3,1,
%T 6,1,1,2,3,3,8,3,5,1,3,8,1,2,60,3,1,7,2,1,1,7,2,1,1,2,2,2,23,1,10,5,1,
%U 1,2,18,1,1,4,13,1,4,57,1,15,2,1,3,4,3,1,2,2,1,1,3,2,7,3,1,2,1,2,3,1,3,3,2
%N Continued fraction for ((24*sqrt(2) - 6*sqrt(3) - 2*Pi)*Pi)/72.
%H Harry J. Smith, <a href="/A161687/b161687.txt">Table of n, a(n) for n = 0..20000</a>
%e 0.75335546051952988027803823... = 0 + 1/(1 + 1/(3 + 1/(18 + 1/(2 + ...))))
%t ContinuedFraction[((24*Sqrt[2] - 6*Sqrt[3] - 2*Pi)*Pi)/72, 100] (* _G. C. Greubel_, Aug 17 2018 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(((24*sqrt(2) - 6*sqrt(3) - 2*Pi)*Pi)/72); for (n=0, 20000, write("b161687.txt", n, " ", x[n+1])); }
%Y Cf. A093824 (decimal expansion).
%K nonn,cofr
%O 0,3
%A _Harry J. Smith_, Jun 18 2009