Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 22 2016 17:45:13
%S 22,46,64,76,82,94,112,124,160,166,208,220,232,250,256,274,304,328,
%T 370,376,394,400,442,448,454,466,502,592,604,610,646,652,670,676,724,
%U 730,748,754,760,838,850,862,904,916,940,946,964,970,1012,1066,1108,1114
%N Smallest of 4 consecutive composite numbers which sum up to prime.
%C One of a(n)+1, a(n)+2, or a(n)+3 is prime, else the sum is even. Therefore there are O(n/log n) members of this sequence up to n by the Prime Number Theorem.
%H Harvey P. Dale, <a href="/A161666/b161666.txt">Table of n, a(n) for n = 1..1000</a>
%e 22+24+25+26=97,..
%t CompositeNext[n_]:=Module[{k=n+1},While[PrimeQ[k],k++ ];k]; lst={};Do[p=n+CompositeNext[n]+CompositeNext[CompositeNext[n]]+CompositeNext[CompositeNext[CompositeNext[n]]];If[ !PrimeQ[n]&&PrimeQ[p],AppendTo[lst,n]],{n,2,5*6!}];lst
%t Transpose[Select[Partition[Select[Range[2000],CompositeQ],4,1],PrimeQ[ Total[ #]]&]] [[1]] (* _Harvey P. Dale_, Jun 22 2016 *)
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Jun 15 2009
%E Comment from _Charles R Greathouse IV_, Oct 12 2009