login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positions n such that A010060(n) = A010060(n+8).
13

%I #22 Jul 23 2021 17:41:15

%S 8,9,10,11,12,13,14,15,40,41,42,43,44,45,46,47,56,57,58,59,60,61,62,

%T 63,72,73,74,75,76,77,78,79,104,105,106,107,108,109,110,111,136,137,

%U 138,139,140,141,142,143,168,169,170,171,172,173,174,175,184,185,186,187,188,189

%N Positions n such that A010060(n) = A010060(n+8).

%C Locates correlations of the form 1xxxxxxx1 or 0xxxxxxx0 in the Thue-Morse sequence.

%C Or: union of numbers 8*A079523(n)+k, k=0, 1, 2, 3, 4, 5, 6, or 7.

%C Generalization: the numbers n such that A010060(n) = A010060(n+2^m) constitute the union of sequences {2^m*A079523(n)+k}, k=0,1,...,2^m-1.

%H G. C. Greubel, <a href="/A161639/b161639.txt">Table of n, a(n) for n = 1..10000</a>

%H J.-P. Allouche, <a href="http://arxiv.org/abs/1401.3727">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, arXiv:1401.3727 [math.NT], 2014.

%H J.-P. Allouche, <a href="http://dx.doi.org/10.5802/jtnb.906">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.

%H V. Shevelev, <a href="http://arXiv.org/abs/0907.0880">Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence</a> arXiv:0907.0880 [math.NT], 2009-2012. [_Vladimir Shevelev_, Jul 31 2009]

%t tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+8], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Oct 24 2013 *)

%t SequencePosition[ThueMorse[Range[0,200]],{x_,_,_,_,_,_,_,_,x_}][[All,1]]-1 (* _Harvey P. Dale_, Jul 23 2021 *)

%o (PARI) is(n)=hammingweight(n)%2==hammingweight(n+8)%2 \\ _Charles R Greathouse IV_, Aug 20 2013

%Y Cf. A161579, A161580, A161627, A131323, A036554, A010060, A121539, A079523, A081706

%K nonn,base

%O 1,1

%A _Vladimir Shevelev_, Jun 15 2009

%E Duplicate of 174 removed by _R. J. Mathar_, Aug 28 2009