login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3n)!/(n!(n+1)!(n+2)!).
3

%I #22 Nov 22 2024 08:06:18

%S 21,231,3003,43758,692835,11685817,207157665,3823000545,72931087320,

%T 1430571328200,28734046963560,589047962752980,12292044987448215,

%U 260543149635912165,5599392250947235125,121830987186399315825

%N a(n) = (3n)!/(n!(n+1)!(n+2)!).

%C 3-d analog of the Catalan numbers A000108.

%H Winston de Greef, <a href="/A161581/b161581.txt">Table of n, a(n) for n = 3..704</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinomialSums.html">Binomial Sums</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CentralBinomialCoefficient.html">Central Binomial Coefficient</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a>.

%F a(n) = A006480(n)/((n+1)^2*(n+2)).

%F a(n) ~ 3^(3*n + 1/2) / (2*Pi*n^4). - _Vaclav Kotesovec_, Feb 21 2023

%F a(n) = (1/2)*A005789(n) for n >= 3. - _Peter Bala_, Mar 01 2023

%F D-finite with recurrence (n+2)*(n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - _R. J. Mathar_, Nov 22 2024

%p A161581 := proc(n) (3*n)!/n!/(n+1)!/(n+2)! ; end: seq(A161581(n),n=3..40) ; # _R. J. Mathar_, Jun 16 2009

%p a := proc (n) options operator, arrow: factorial(3*n)/(factorial(n)*factorial(n+1)*factorial(n+2)) end proc: seq(a(n), n = 3 .. 20); # _Emeric Deutsch_, Jun 14 2009

%Y Cf. A000108, A005789, A006480.

%K nonn

%O 3,1

%A _Alexander Adamchuk_, Jun 14 2009

%E Repetitions of information contained in other sequences removed by _R. J. Mathar_, Jun 16 2009

%E More terms from _Emeric Deutsch_, Jun 14 2009