login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positions n such that A010060(n) = A010060(n+3).
14

%I #22 Apr 16 2018 02:52:17

%S 0,1,3,4,6,8,9,11,12,13,15,16,17,19,20,22,24,25,27,28,30,32,33,35,36,

%T 38,40,41,43,44,45,47,48,49,51,52,54,56,57,59,60,61,63,64,65,67,68,70,

%U 72,73,75,76,77,79,80,81,83,84,86,88,89,91,92,94,96,97,99,100,102,104,105,107

%N Positions n such that A010060(n) = A010060(n+3).

%C Or: union of A131323 with the sequence of terms of the form A131323(n)-2, and with the sequence of terms of the form A036554(n)-2.

%C Conjecture: In every sequence of numbers n such that A010060(n)=A010060(n+k), for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. - _Vladimir Shevelev_, Jul 31 2009

%H G. C. Greubel, <a href="/A161579/b161579.txt">Table of n, a(n) for n = 1..10000</a>

%H J.-P. Allouche, <a href="http://arxiv.org/abs/1401.3727">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, arXiv:1401.3727 [math.NT], 2014.

%H J.-P. Allouche, <a href="http://dx.doi.org/10.5802/jtnb.906">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.

%H V. Shevelev, <a href="http://arxiv.org/abs/0907.0880">Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence</a> arXiv:0907.0880 [math.NT], 2009-2012. [_Vladimir Shevelev_, Jul 31 2009]

%F Equals {A001477} \ {A161580}.

%t tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+3], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Oct 24 2013 *)

%o (PARI) is(n)=hammingweight(n)%2==hammingweight(n+3)%2 \\ _Charles R Greathouse IV_, Aug 20 2013

%Y Cf. A131323, A036554, A010060, A121539, A079523, A081706, A161580.

%K nonn,base

%O 1,3

%A _Vladimir Shevelev_, Jun 14 2009

%E More terms from _R. J. Mathar_, Aug 17 2009