login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1. a(n) = the smallest integer > a(n-1) such that d(a(n)) > d(n), where d(n) = the number of divisors of n.
3

%I #13 Feb 26 2019 22:45:35

%S 1,4,6,8,9,12,14,16,18,20,21,24,25,28,30,32,33,36,38,40,42,44,45,48,

%T 50,52,54,56,57,60,62,64,66,68,70,72,74,75,76,80,81,84,85,88,90,92,93,

%U 96,98,100,102,104,105,108,110,112,114,116,117,120,121,124,126,128,130,132

%N a(1)=1. a(n) = the smallest integer > a(n-1) such that d(a(n)) > d(n), where d(n) = the number of divisors of n.

%H Harvey P. Dale, <a href="/A161576/b161576.txt">Table of n, a(n) for n = 1..1000</a>

%p with(numtheory): a := proc (n) local j: if n = 1 then 1 else for j from a(n-1)+1 while tau(j) <= tau(n) do end do: j end if end proc: seq(a(n), n = 1 .. 70); # _Emeric Deutsch_, Jul 11 2009

%t si[{n_,a_}]:=Module[{k=a+1,d=DivisorSigma[0,n+1]},While[DivisorSigma[0,k]<=d,k++];{n+1,k}]; NestList[si,{1,1},70][[All,2]] (* _Harvey P. Dale_, Nov 12 2017 *)

%Y Cf. A137518, A161577, A161578.

%K nonn

%O 1,2

%A _Leroy Quet_, Jun 14 2009

%E Extended by _Emeric Deutsch_, Jul 11 2009